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Low-rank optimization



Low-rank problems and applications

Low-rank problems

• Low-rank matrix/tensor completion [Wen-Yin-Zhang’12; Xu-Yin-Wen-Zhang’12;

Kressner-Steinlechner-Vandereycken’14; Steinlechner’16; Kasai-Mishra’16; Shen-Liu’20; Dong-G.-Guan-Glineur’22;

Zhao-Bai-Sun-Zheng’22; Yu-Zang-Huang’23; G.-Peng-Yuan’24]

• Low-rank approximation of higher-dimensional functions [Grasedyck-Kressner-Tobler’13;

Uschmajew-Vandereycken’20]

• Low-rank solution of tensor equations [Kressner-Steinlechner-Vandereycken’16]

• Low-rank SDP [Lemon-So-Ye’16; Wang-Deng-Liu-Wen’23; Tang-Toh’23]

• Low-rank solution of high-dimensional PDEs [Eigel-Schneider-Sommer’22;

Bachmayr-Eisenmann-Uschmajew’23; Wang-Lin-Liao-Liu-Xie’23]

Applications

• Recommendation system: movie ratings [Frolov-Oseledets’17]

• Hyperspectral Images [Zhang-He-Zhang-Shen-Yuan’13; Zhuang-Fu-Ng’21]

• Image and video inpainting [Bertalmio-Sapiro-Caselles-Ballester’00; Fu-Ruan-Luo-An-Jin’21;

Luo-Zhao-Li-Ng-Meng’23]

• EEG (brain signals) data [Mørup-Hansen-Herrmann-Parnas-Arnfred’06; Kong-Kong-Fan-Zhao-Cichoki’17]

• Magnetic resonance imaging (MRI) [Banco-Aeron-Hoge’16; Choi-Bao-Zhang’18; Fessler’20]

• Data analysis, e.g., Weather forecast [Loucheur-Absil-Journee’23] and Markov models

[Zhu-Li-Wang-Zhang’22]
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Low-rank approximation - matrix

Matrix rank, singular value decomposition (SVD)

Low-rank matrix factorizations

• Input data (A): Traffic matrix (size: ∼ 103 × 105)

• Low-rank approx. by X̂k := UkΣkV>
k (truncated SVD) k = 10

accuracy (1 −
∥∥∥UkΣkV>

k −A
∥∥∥

F
‖A‖F

): 67.6%

storage
#parameters (Uk ,Σk ,Vk)

#parameters (A)
: 1.1% only!
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Low-rank approximation - tensor

Low-rank assumption

/ Store a full tensor: O(nd) number of parameters!

, Low-rank tensor decomposition: save storage

Full image: 20MB Compressed image: 0.4MB

Tucker rank: [65, 65, 5] Relative error: 0.0743
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Low-rank problems: an overview of geometric methods

Geometric methods for low-rank problems

I. optimization on manifolds

min f (X)

s. t. X ∈ Rm×n
r

II. optimization on varieties

min f (X)

s. t. X ∈ Rm×n
≤r

III. parametrization (M, ϕ)

min g(x) = f (ϕ(x))

s. t. x ∈ M

M

Rm×n
≤r R

ϕ

f

f ◦ ϕ
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I. Optimization on manifolds

Optimization on the set of fixed-rank matrices

min
X∈Rm×n

f (X)

s. t. X ∈ Rm×n
r := {X ∈ Rm×n : rank(X)= r}

• Rm×n
r : smooth manifold [Helmke-Shayman’95]

• r ≤ min(m,n): rank parameter

Tangent space [Vandereycken’13]

Given a thin SVD X = UΣV> with rank r

TXRm×n
r =

[
U U⊥

] [ Rr×r Rr×(n−r)

R(m−r)×r 0

] [
V V⊥

]>
=

[
U U⊥

] [
V V⊥

]>

7



I. Optimization on manifolds

Optimization on the set of fixed-rank matrices

min
X∈Rm×n

f (X)

s. t. X ∈ Rm×n
r := {X ∈ Rm×n : rank(X)= r}

• Rm×n
r : smooth manifold [Helmke-Shayman’95]

• r ≤ min(m,n): rank parameter

Tangent space [Vandereycken’13]

Given a thin SVD X = UΣV> with rank r

TXRm×n
r =

[
U U⊥

] [ Rr×r Rr×(n−r)

R(m−r)×r 0

] [
V V⊥

]>
=

[
U U⊥

] [
V V⊥

]>

7



I. Existing methods

Optimization on manifold Rm×n
r

X

Rm×n
r

TXRm×n
r

−∇f (X)

ξ = −gradf (X)

RX(sξ)

• Online-learning procedure [Shalit’12]

• Riemannian conjugate gradient descent [Vandereycken’13]

• Quotient geometry [Mishra-Meyer-Bonnabel-Sepulchre’14; Luo-Li-Zhang’23]

 Rm×n
r is NOT closed!

How to choose a rank parameter?
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II. Optimization on varieties

min
X∈Rm×n

f (X)

s. t. X ∈ Rm×n
≤r := {X ∈ Rm×n : rank(X) ≤ r}

Set of bounded-rank matrices Rm×n
≤r

- closure of Rm×n
r

- real-algebraic variety

- more flexible choices of rank

Tangent cone [Schneider-Uschmajew’15]
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Given a thin SVD X = UΣV> with rank r

TXRm×n
≤r =

[
U U⊥

] [ Rr×r Rr×(n−r)

R(m−r)×r R(m−r)×(n−r)
≤r−r

] [
V V⊥

]>

=
[
U U1 U2

] r ℓ

r
ℓ

[
V V1 V2

]>
with [U U1 U2] ∈ O(m), [V V1 V2] ∈ O(n), and ` = 0, 1, . . . , r − r
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III. Optimization through smooth parametrizations

Optimization via smooth parametrizations

min g(x) = f (ϕ(x))

s. t. x ∈ M

M

Rm×n
≤r R

ϕ

f

f ◦ ϕ

- search space: M
- “Lift” ϕ: ϕ(M) = Rm×n

≤r

Examples

• LR factorization:

S = Rm×r × Rn×r ϕ(L,R) = LR>

- Riemannian methods [Mishra et al.’12; Levin et al.’22]

- Gauss–Southwell type methods [Olikier et al.’23]

• Burer–Monteiro factorization [Burer-Monteiro’03]

M = Rm×r ϕ(R) = RR>
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Low rank + additional constraints



Low rank + additional constraints

Bounded-rank matrices

min
X∈Rm×n

f (X)

s. t. rank(X) ≤ r

,

h(X) = 0

Blanket assumptions

• Objective: f : Rm×n → R is twice continuously differentiable

• Smooth and orthogonally invariant constraints:

h(XQ) = h(X) for Q ∈ O(n)

• The differential Dh has full rank in

H :=
{

X ∈ Rm×n : h(X) = 0
}

 H is a smooth manifold embedded in Rm×n
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Applications

Feasible region

Rm×n
≤r ∩H with H = {X : h(X) = 0}

Low rank + oblique manifold

• Low-rank data fitting on sphere [Chu et al.’05 SIMAX]

• Model reduction of Markov processes

• Reinforcement learning (RL)

• Neural network training

H = Ob(m,n) := {X ∈ Rm×n : diag(XX>)− 1 = 0}

R3×4
≤2 ∩H 3
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Applications (cont’d)

Low rank + Frobenius-sphere

• Low-rank approximation of graph similarity matrices [Cason et al.’13 LAA]

H = SF(m,n) := {X ∈ Rm×n : ‖X‖2
F − 1 = 0}

Low rank + stacked Stiefel manifold

• Low-rank solutions of synchronization problems [Boumal’15]

H =
{

X = (X1;X2; . . . ;Xk) ∈ Rkp×n : X>
j ∈ St(n, p) for j = 1, 2, . . . , k

}
X1X>

1 = I

X2X>
2 = I

X3X>
3 = I

∈ H

Low rank + SDPs

• Low-rank semidefinite programs [[Journée et al.’10; Wang et al.’23; Tang-Toh’23]

min 〈C ,Y 〉 , s. t. Y ∈ Rn×n
≤r ∩ Sn

+, A(Y ) = b

min
〈

C ,XX>
〉
, s. t. X ∈ Rn×n

≤r , A(XX>) = b
15



Challenges

Constraint-coupled optimization

min
X∈Rm×n

f (X)

s. t. X ∈ Rm×n
≤r ∩H

Challenges

1. Unknown optimality conditions
Bouligand-tangent cone of the coupled feasible region

2. Unclear strategy to preserve feasibility on Rm×n
≤r ∩H

3. Inherently non-smooth structure of Rm×n
≤r

 How to tackle the coupled and non-smooth constraints?
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Bounded-rank optimization: optimality analysis

Variational geometry of Rm×n
≤r

• Mordukhovich normal cone [Luke’13]

• Bouligand tangent cone and Fréchet normal cone [Schneider-Uschmajew’15]

• Clarke tangent cone and the corresponding normal cone [Hosseini et al.’19; Li et

al.’19]

Variational geometry of Rm×n
≤r ∩ C

• Mordukhovich normal cone: C = Sym(n) [Tam’17]

• Fréchet normal cone: C = Sym(n) ∩ Bi [Li et al.’20]

B1 = {X : ‖X‖F ≤ 1}, B2 = {X : −tIn � X � tIn}, B3 = {X : X � 0, Tr(X) = 1}

• C is a spectral set [[Lewis’96; Pan’17; Li-Luo’23]

m 6= n breaks the symmetry!

• Bouligand tangent cone: C={X ∈ Rm×n : ‖X‖F = 1} [Cason et al.’13]

• Fréchet normal cone: C = {X ∈ Rm×n : A(X) = b} [Li-Luo’23]

 Not available in Rm×n
≤r ∩H!

17



Bounded-rank optimization: optimality analysis

Variational geometry of Rm×n
≤r

• Mordukhovich normal cone [Luke’13]

• Bouligand tangent cone and Fréchet normal cone [Schneider-Uschmajew’15]

• Clarke tangent cone and the corresponding normal cone [Hosseini et al.’19; Li et

al.’19]

Variational geometry of Rm×n
≤r ∩ C

• Mordukhovich normal cone: C = Sym(n) [Tam’17]

• Fréchet normal cone: C = Sym(n) ∩ Bi [Li et al.’20]

B1 = {X : ‖X‖F ≤ 1}, B2 = {X : −tIn � X � tIn}, B3 = {X : X � 0, Tr(X) = 1}

• C is a spectral set [[Lewis’96; Pan’17; Li-Luo’23]

m 6= n breaks the symmetry!

• Bouligand tangent cone: C={X ∈ Rm×n : ‖X‖F = 1} [Cason et al.’13]

• Fréchet normal cone: C = {X ∈ Rm×n : A(X) = b} [Li-Luo’23]

 Not available in Rm×n
≤r ∩H!

17



Bounded-rank optimization: optimality analysis

Variational geometry of Rm×n
≤r

• Mordukhovich normal cone [Luke’13]

• Bouligand tangent cone and Fréchet normal cone [Schneider-Uschmajew’15]

• Clarke tangent cone and the corresponding normal cone [Hosseini et al.’19; Li et

al.’19]

Variational geometry of Rm×n
≤r ∩ C

• Mordukhovich normal cone: C = Sym(n) [Tam’17]

• Fréchet normal cone: C = Sym(n) ∩ Bi [Li et al.’20]

B1 = {X : ‖X‖F ≤ 1}, B2 = {X : −tIn � X � tIn}, B3 = {X : X � 0, Tr(X) = 1}

• C is a spectral set [[Lewis’96; Pan’17; Li-Luo’23]

m 6= n breaks the symmetry!

• Bouligand tangent cone: C={X ∈ Rm×n : ‖X‖F = 1} [Cason et al.’13]

• Fréchet normal cone: C = {X ∈ Rm×n : A(X) = b} [Li-Luo’23]

 Not available in Rm×n
≤r ∩H!

17



Bounded-rank optimization: algorithms

• Projected gradient descent framework [Jain et al.’14; Schneider-Uschmajew’15; Olikier et

al.’22; 2024]

• Retraction-free methods [Schneider-Uschmajew’15; Olikier et al.’23; 2024]

line-search along restricted tangent cones

• Optimizing over a smooth parameterization

M

Rm×n
≤r R

φ
g := f ◦ φ

f

min g (Y ) s. t. Y ∈ M

- LR factorization [Mishra et al. 2012; Levin et al. 2022]

M = Rm×r × Rn×r , φ(L,R) = LR>

- SVD-type lift [Mishra et al.’14; Levin et al.’23]

M = St(m, r)× Sym(r)× St(n, r), φ(U ,S,V ) = USV>

- Desingularization [Khrulkov-Oseledets’18; Rebjock-Boumal’24]

M =
{
(X ,G) ∈ Rm×n × Gr(n,n − r) : XG = 0

}
, φ(X ,G) = X

 Not applicable in coupled constraints Rm×n
≤r ∩H!
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A space-decoupling framework?

min
X∈Rm×n

f (X)

s. t. X ∈ Rm×n
≤r ∩H

Space-decoupling for coupled constraints

Mh
φ(x) := X

Rm×n
≤r ∩H

rank information? h(X) = 0?

Goal:

• a smooth parametrization

• optimality analysis

• convergence analysis

• equivalence of two problems
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Orthogonally invariant functions and

optimality



Orthogonally invariant “meets” low rank

Low rank decomposition

Rm×n
≤r ∩H =

s=r⋃
s=0

(Rm×n
s ∩H)

• H = {X ∈ Rm×n : h(X) = 0} with orthogonally invariant h

• X ∈ Rm×n
s ∩H extracts low-rank (H ) and orthogonally invariant (V )

X = H V>

Submanifold inherites orthogonal invariance

X = HV>, V>V = I

• Natural embeddings: is(·) : Rm×s −→ Rm×n, H 7−→ [H 0m×(n−s)]

• hs := h ◦ is is orthogonally invariant

• Hs :=
{

H ∈Rm×s : hs(H ) = 0
}
is an embedded submanifold of Rm×s

 X ∈ H ⇐⇒ H ∈ Hs
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Space decoupling - level 1: tangent space

H = {X ∈ Rm×n : h(X) = 0} and h(XQ) = h(X) for Q ∈ O(n)

Definition

• Bouligand tangent cone:

TXX :=

{
η = lim

k→∞

(Xk − X)

tk
: Xk ∈ X , tk > 0 for all k, lim

k→∞
tk = 0

}
.

• Fréchet normal cone: NXX := (TXX )◦

Tangent space decoupling at X = HV> ∈ H

TXH =
{

KV> + BV>
⊥ : K ∈ THHs, B ∈ Rm×(n−s)

}
=(THHs)V>⊕

(
Rm×(n−s)

)
V>

⊥

 TX

(
Rm×n
≤r ∩H

)
?
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Space decoupling - level 1: tangent space

H = {X ∈ Rm×n : h(X) = 0} and h(XQ) = h(X) for Q ∈ O(n)
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Space decoupling - level 2: tangent cone

Smooth layers

Rm×n
≤r ∩H =

s=r⋃
s=0

(Rm×n
s ∩H) : X = HV> = UΣV>

• Rm×n
s ∩H is a smooth manifold with

TX
(
Rm×n

s ∩H
)
=
{

KV> + UJV>
⊥ : K ∈ THHs, J ∈ Rs×(n−s)

}
= TXRm×n

s ∩ TXH

Closed-form expression

TX
(
Rm×n

≤r ∩H
)
=

{
KV> + UJV>

⊥ + U⊥RV>
⊥ : K ∈ THHs

J ∈ Rs×(n−s), R ∈ R(m−s)×(n−s), rank(R) ≤ r − s

}

Intersection rules for tangent and normal cones

TX
(
Rm×n

≤r ∩H
)
= TXRm×n

≤r ∩TXH

NX
(
Rm×n

≤r ∩H
)
= NXRm×n

≤r ⊕NXH

• Recover the tangent cone in [Cason-Absil-Dooren’13, Theorem 6.1] when

H = {X ∈ Rm×n : ‖X‖F = 1}
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A space-decoupling framework



Space decoupling - level 3: a smooth parametrization

Mh
φ(x) := X

Rm×n
≤r ∩H

rank information? h(X) = 0?

A space-decoupling parameterization Mh

• Borrow ideas from desingularization [Khrulkov-Oseledets’18; Rebjock-Boumal’24]

• Parameterize the coupled and non-smooth Rm×n
≤r ∩H

Mh :=
{
(X ,G) ∈ Rm×n × Gr(n,n − r) : XG = 0, h(X) = 0

}
where Gr(n,n − r) = {P ∈ Sym(n) : P2 = P, rank(P) = n − r}

 Mh is a smooth manifold embedded in Rm×n × Sym(n)!
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Recast the original constraint-coupled problem

Mh

Rm×n
≤r ∩H R

φ
f̄ := f ◦ φ

f

min
(X,G)∈Mh

f̄ (X ,G) (M)

min
X∈Rm×n

≤r ∩H
f (X) (O)

• φ : Mh → Rm×n
≤r ∩H : (X ,G) 7→ X is a surjection

• (M) is a smooth Riemannian optimization problem

- Riemannian derivatives

- retractions

- vector transports
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Space decoupling - level 4: optimization

Riemannian gradient ∇Mh f̄ (X ,G)

K̄ = PTHHr (∇f (X)V ) , V̄p = G∇f (X)>HM−1
H,ω

Riemannian Hessian ∇2
Mh

f̄ (X ,G)[η, ζ]K̄ = ∇2
Hf (X)[η]V +

(
I − HM−1

H,ωH>
)
∇f (X)Vp,

V̄p = G
(
(∇2f (X)[η])>H +∇f (X)>(I − HM−1

H,ωH>)K
)

M−1
H,ω

First-order retraction

R(X,G)(η, ζ) := (RHr
H (K)(RSt

V (Vp))
>, I − RSt

V (Vp)(RSt
V (Vp))

>)

Second-order retraction

R(X,G) (η, ζ) := ([PHr ((X + η)W )]W>, I − WW>)

W = L(L>L)−
1
2 , L = V + Vp(I − K>HM−1

H,ω)

Vector transport

K̄ = T H
K̃ (K) and V̄p = (I − Ṽ Ṽ>)T St

Ṽp
(Vp)

Optimization on Mh is painless if geometry of H is developed!
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Equivalence of problems

Mh

Rm×n
≤r ∩H R

φ
f̄ := f ◦ φ

f

min
(X,G)∈Mh

f̄ (X ,G) (M)

min
X∈Rm×n

≤r ∩H
f (X) (O)

 Parameterization may introduce spurious stationarity!

Equivalence

The space-decoupling parametrization Mh of Rm×n
≤r ∩H satisfies

1 “1 ⇒ 1” holds at (X ,G) if and only if rank (X) = r

2 “2 ⇒ 1” holds everywhere on Mh
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Convergence results

Important ingredients

• Mh is a complete manifold

• Compact sublevel sets of f =⇒ compact sublevel sets of f̄

General convergence theorem

• The sequence {(Xk,Gk)} generated by monotone algorithms has at least

one accumulation point

• If the accumulation point (X∗,G∗) is second-order stationary for (M),

then X∗ is first-order stationary for (O)

Specific algorithms

• RGD accumulates to first-order critical points

• RTR accumulates to second-order critical points
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Numerical experiments



1. Low-rank approximation of spherical data

Approximate A ∈ H = Ob(m,n) with low-rank matrix [Chu et al.’05]

min
X∈Rm×n

1
2 ‖PΩ(X − A)‖2

s. t. rank(X) ≤ r

diag(XX>)− 1 = 0

H=Ob(m,n)−−−−−−−−→ min
x∈Mh

f̄ (x) := 1
2 ‖PΩ(φ(x)− A)‖2

F

Methods based on Manopt v8.0

• Riemannian gradient descent method (RGD)

• Riemannian trust region method (RTR)

Running platform

• CPU: two Intel(R) Xeon(R) Processors Gold 6330 @ 2.00GHz×28

• GPU: one NVIDIA A800 (80GB memory) GPU
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1. Test on synthetic data

Test with the unbiased rank parameter r = r∗ = 6

Test with over-estimated rank parameters

Algorithm
r = 7 r = 8 r = 9 r = 10

Test err. Time Test err. Time Test err. Time Test err. Time

Mh-RGD 4.88e−12 11.87 5.12e−13 6.55 1.11e−12 8.13 4.16e−12 16.98
Mh-RTR 3.34e−15 14.93 5.27e−15 8.74 5.81e−15 7.19 2.14e−15 7.68
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2. Low-rank approximation of graph similarity matrices

Measuring problem [Cason et al.’13]

X ∈ H = SF(m,n) measures the node-to-node similarity between graphs

min
X∈Rm×n

− tr(X>L ◦ L(X))

s. t. rank(X) ≤ r

‖X‖2
F − 1 = 0

H=SF(m,n)−−−−−−−→ min
x∈Mh

−tr
(
φ(x)>L ◦ L(φ(x))

)
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2. Test on low-rank solution

Problem setting

• GA of m = 2000 vertices: a single cycle

• GB of n = 3000 vertices: binomial random graph

• Solution of low rank: r∗ = rank(X∗) = 1

unbiased rank parameter

Iteration

R
e

la
ti
v
e

 e
rr

o
r

over-estimated rank parameters

Iteration

R
e

la
ti
v
e

 e
rr

o
r
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3. Low-rank semidefinite programming

Synchronization problem

• n cameras with a set of relative rotations {R̂ij : (i, j) ∈ E}
• reconstruct the absolute rotations {Ri}n

i=1 such that R̂ij ≈ RjR>
i

• C is the measurement matrix defined by R̂ij

min
X∈Rn×n

〈C ,XX>〉

s. t. rank(X) ≤ r , X ∈ St(3n, 3)n
H=St(3n,3)n
−−−−−−−−→ min

x∈Mh
f̄ (x) = 〈C , φ(x)φ(x)>〉

Reconstructed errors evaluated by ‖RiR>
j − R̂ij‖F

Errors on Standford bunny
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3. Visualization of the reconstruction
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4. Model reduction of Markov processes

Problem formulation

• State space S = {s1, s2, . . . , sn} and Markov model P ∈ R|S|×|S|

• Hadamard parameterization: P = X � X , X ∈ Ob(|S| , |S|)

• Proposed model

min
X∈R|S|×|S|

1
2‖X � X − P̂‖2

F

s. t. rank(X) ≤ r

diag(XX>)− 1 = 0

H=Ob(|S|,|S|)−−−−−−−−−→ min
x∈Mh

1
2‖φ(x)� φ(x)− P̂‖2

F
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4. Test on the Manhattan transportation network

Problem setting

• Dataset of 1.1 × 107 NYC Yellow cab trips

• Model the transportation dynamics as a Markov proces

P̂(i, j) =

∑T
t=1 I

(
spickupt = i, sdropofft = j

)
∑T

t I
(

spickupt = i
) , for i, j ∈ S

State compression

r = 4 r = 5 r = 6 r = 7
35



5. Low-rank reinforcement learning

Agent

Environment

action

at ∼ π (·|st)

next state

st+1 ∼ P (·|st , at)

reward Rt

state

st

Low-rank strategy

• Hadamard parameterization for policy: π(X) := X � X , X ∈ Ob(|S| , |A|)
• Impose low rank constraint: rank(X) ≤ r

min
X∈R|S|×|A|

− J(π(X))

s. t. rank(X) ≤ r ,

diag(XX>)− 1 = 0

H=Ob(|S|,|S|)−−−−−−−−−→ min
x∈Mh

−J(π(φ(x)))
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5. Test in two environments

Pendulum Mountain car

Parameter efficiency

Algorithm
Pendulum Mountain car

Parameters ρstorage Reward Parameters ρstorage Reward

REINFORCE 86, 961 1.00 −0.94 582, 096 1.00 96.99
Q-learning 86, 961 1.00 −0.75 582, 096 1.00 83.95
LRRPG (r = 5) 10, 810 0.12 −0.73 15, 485 0.03 88.31
LRRPG (r = 10) 21, 620 0.25 −0.58 30, 970 0.05 86.44
LRRPG (r = 15) 32, 430 0.37 −0.83 46, 455 0.08 78.23
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6. Low-rank neural network with weight normalization

Motivation

• Weight normalization [Salimans-Kingma’16]

W ∈ Rm×n ⇐= W = (g1>)� X with g ∈ Rm,X ∈ Ob(m,n)
• Low-rank structure [Idelbayev-Perpinan’22; Qu et al.’24]

Proposed model

min
{Xi ,gi}l

i=1

f ({Xi, gi}l
i=1)

s. t. rank(Xi) ≤ ri

diag(XiX>
i )− 1 = 0

H=Ob(m,n)l
−−−−−−−−→ min

xi∈Mhi , gi
f ({φ(xi), gi}l

i=1)

Compared models

Model Weight norm. Low rank Net. param. Search space Remark

Vanilla - - {Wi} Rmi×ni -

WN X - {Xi , gi} Ob(mi ,ni)×Rmi -

LR - X {xi , gi} Mhi ×Rmi hi(·) ≡ 0
WN+LR X X {xi , gi} Mhi × Rmi hi(Xi) = XiX>

i −1
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6. Test on deep learning tasks

Test on MNIST dataset

MLP (vanilla) MLP (WN) MLP (LR) MLP (WN+LR)
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Test on CIFAR-10 dataset

Algorithm Parameters ρstorage Infer. flops ρinfer Train. acc. (%) Test acc. (%)

CNN (vanilla) 2.62M 1.00 565.50M 1.00 96.67 87.80
CNN (WN) 2.62M 1.00 565.50M 1.00 100.00 90.31
CNN (LR) 0.38M 0.14 179.02M 0.32 90.01 83.07
CNN (WN+LR) 0.38M 0.14 179.02M 0.32 95.39 87.30
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Take-home notes

A space-decoupling framework

Level 1: Tangent space
bridge the rank information and orthogonal invariance

Level 2: Tangent cone
identify tangent and normal cones to Rm×n

≤r ∩ H

Level 3: Parametrization
a space-decoupling parametrization Mh and its geometry

Level 4: Optimization
Riemannian optimization on Mh
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Thanks for your attention!

Email: gaobin@lsec.cc.ac.cn
Homepage: https://www.gaobin.cc

homepage group blog
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