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Low-rank problems and applications

Low-

rank problems

Low-rank matrix/tensor completion [wen-Yin-zhang"12; Xu-Yin-Wen-Zhang'12;
Kressner-Steinlechner-Vandereycken"14; Steinlechner'16; Kasai-Mishra'16; Shen-Liu'20; Dong-G.-Guan-Glineur'22;
Zhao-Bai-Sun-Zheng'22; Yu-Zang-Huang'23; G.-Peng-Yuan'24]

Low-rank approximation of higher-dimensional functions [Grasedyck-Kressner-Tobler'13;
Uschmajew-Vandereycken'20]

Low-rank solution of tensor equations [Kressner-Steinlechner-vandereycken'16]

Low-rank SDP [Lemon-So-Ye16; Wang-Deng-Liu-Wen'23; Tang-Toh'23]

Low-rank solution of high-dimensional PDEs [Figel-Schneider-Sommer'22;

Bachmayr-Eisenmann-Uschmajew'23; Wang-Lin-Liao-Liu-Xie'23]

Applications

Recommendation system: movie ratings [Frolov-Oseledets'17]

Hyperspectral Images [zhang-He-Zhang-Shen-Yuan'13; Zhuang-Fu-Ng'21]

Image and video inpainting [Bertalmio-Sapiro-Caselles-Ballester'00; Fu-Ruan-Luo-An-Jin'21;
Luo-Zhao-Li-Ng-Meng'23]

EEG (brain signals) data [Mgrup-Hansen-Herrmann-Parnas-Arnfred'06; Kong-Kong-Fan-Zhao-Cichoki'17]
Magnetic resonance imaging (MRI) [Banco-Aeron-Hoge'16; Choi-Bao-Zhang'18; Fessler'20]

Data analysis, e.g.,, Weather forecast [Loucheur-Absil-Journee’23] and Markov models
[Zhu-Li-Wang-Zhang'22]



Low-rank approximation - matrix

Matrix rank, singular value decomposition (SVD)

Low-rank matrix factorizations

e Input data (A): Traffic matrix (size: ~ 10% x 10°)
e Low-rank approx. by X, := Uy, V, (truncated SVD) k= 10

UpSL V] —A
accuracy (1 — [ TlAIIC‘F HF): 67.6%
storage  ‘fparameters (Up, By, Vi) . 1.1% only!

#parameters (A)




Low-rank approximation - tensor

Low-rank assumption

® Store a full tensor: @(n?) number of parameters!

© Low-rank tensor decomposition: save storage

Compressed image: 0.4MB




Low-rank problems: an overview of geometric methods

Geometric methods for low-rank problems
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I. Optimization on manifolds

Optimization on the set of fixed-rank matrices

min  f(X)

XERmMXn

s. t. X e R :={X € R™*" : rank(X)=r}

e R*™ smooth manifold [Helmke-shayman'9s]

e r < min(m, n): rank parameter
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Optimization on the set of fixed-rank matrices

min  f(X)

XERmMXn

s. t. X e R :={X € R™*" : rank(X)=r}

e R™™ smooth manifold [Helmke-Shayman'9s]

e r < min(m, n): rank parameter

Tangent space [vandereycken13]

Given a thin SVD X = US V' " with rank r

RIXT Rrx(n—r)

mxn __ 1
TxR, - [U u ] R(m—)xr 0

v v

:[U UL} [V VL}T




. Existing methods

Optimization on manifold R;**"

e Online-learning procedure [shalit12]
e Riemannian conjugate gradient descent [vandereycken'13]

e Quotient geometry [Mishra-Meyer-Bonnabel-Sepulchre'14; Luo-Li-Zhang'23]
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. Existing methods

Optimization on manifold R;**"

—Vi(X)

e Online-learning procedure [shalit12]
e Riemannian conjugate gradient descent [vandereycken'13]

e Quotient geometry [Mishra-Meyer-Bonnabel-Sepulchre'14; Luo-Li-Zhang'23]

~»  R™*™ s NOT closed!

How to choose a rank parameter?
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Il. Optimization on varieties

min  f(X)

XeRmXn
s. t. X eRZ™ :={X € R™*" : rank(X) < r}

Set of bounded-rank matrices RZ "
- closure of R™*™ -
- real-algebraic variety
- more flexible choices of rank



Il. Optimization on varieties

min  f(X)
XeRmXn

s. t. X e R = {X € R™" i rank(X) < r}

Set of bounded-rank matrices RZ "
- closure of R™*™ -
- real-algebraic variety
- more flexible choices of rank

Ta ngent cone [Schneider-Uschmajew'15]

Given athin SVD X = US V' " with rank r

TxRZ) " = [U UL] R(EK_X;M @T?ﬁ:ﬁﬂ [V VL}T
Ll
v on e B [vonow]

with [U Uy Uz] € O(m), [V V1 Vo] € O(n),and £ =0,1,..., r—r 10



Il. Optimization on varieties

min  f(X)

XeRmXn
s. t. X eRZ™ :={X € R™*" : rank(X) < r}

Set of bounded-rank matrices RZ "
- closure of R™*™ -
- real-algebraic variety
- more flexible choices of rank

Ta ngent cone [Schneider-Uschmajew'15]

N<(r-n(X)

= mxmn
Ee TXRS.,.

mxn
TxRY

mxn
RL

NxR™X™ 10
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Low-rank problems: an overview of geometric methods

|. optimization on manifolds Il. optimization on varieties
: min  f(X) : : min  f(X) :
1 ! 1 )
Il s.t. X eRM™" : Il s.t. X eRZX" :

Geometric methods for low-rank problems

l

IIl. parametrization (M, ¢) M
L min g(s) = f(e(e) | @l foy
: s.t xeM E
et R — 3 R



[Il. Optimization through smooth parametrizations

Optimization via smooth parametrizations

M
min  g(z) = f((2)) fou
s. t. reM v
RZ" —— R
- search space: M f

- “Lift" o (M) = RZX"

Examples
e LR factorization:

S:RerXRnXT QD(L,R):LRT

- Riemannian methods [Mishra et al12; Levin et al:22]
- Gauss-Southwell type methods [olikier et al/23]

e Burer-Monteiro factorization [Burer-Monteiro'03]

M=R™"  o(R)=RR'



Low rank + additional constraints



Low rank + additional constraints

Bounded-rank matrices

min F(X)

XERMXn
s.t. rank(X) < r
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Bounded-rank matrices + orthogonally invariant constraints
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XGRTTLX n
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Bounded-rank matrices + orthogonally invariant constraints

min F(X)
XGRTTLXTL
s. t. rank(X) < r,
hX)=0

Blanket assumptions

e Objective: f: R™*™ — R is twice continuously differentiable
e Smooth and orthogonally invariant constraints:

h(XQ) = h(X) for Q€ O(n)
e The differential DA has full rank in

H:={XeR™": h(X)=0}



Low rank + additional constraints

Bounded-rank matrices + orthogonally invariant constraints

min F(X)
XGRTTLXTL
s. t. rank(X) < r,
hX)=0

Blanket assumptions

e Objective: f: R™*™ — R is twice continuously differentiable
e Smooth and orthogonally invariant constraints:

h(XQ) = h(X) for Q€ O(n)
e The differential DA has full rank in

H:={XeR™": h(X)=0}

~s M is a smooth manifold embedded in R™*"



Applications

Feasible region
RZ"NH with H={X: h(X)=0}

Low rank + oblique manifold

e Low-rank data fitting on sphere [chu et al:05 simax]
Model reduction of Markov processes
Reinforcement learning (RL)
Neural network training

H = Ob(m,n) :== {X e R™": diag(XX ") —1 =0}

-
3x4 I 7777777777
PANH S 0050000000000 ~
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Applications (cont'd)

Low rank + Frobenius-sphere
e Low-rank approximation of graph similarity matrices [cason et al13 LAA]

H = Se(m,n) = {X € R™": X2~ 1=0}

Low rank + stacked Stiefel manifold
e Low-rank solutions of synchronization problems [soumat1s]

H:{X:(Xl;Xg;...;Xk) R X[ € St(n, p) forj:1,2,...,k}

o ]| en

Low rank + SDPs
e Low-rank semidefinite programs [journée et al!10; Wang et al'23; Tang-Toh'23]
min (C,Y), s.t. Y eRL"NSY, A(Y)=0

min <C,XXT>, st X eRY AXXT) =



Challenges

Constraint-coupled optimization

min F(X)

Xe]Ran
s.t.  XeRNH

Challenges

1. Unknown optimality conditions
Bouligand-tangent cone of the coupled feasible region

2. Unclear strategy to preserve feasibility on RZX" N'H

3. Inherently non-smooth structure of RZ "



Challenges

Constraint-coupled optimization

min F(X)

Xe]Ran
s.t.  XeRNH

Challenges

1. Unknown optimality conditions
Bouligand-tangent cone of the coupled feasible region

2. Unclear strategy to preserve feasibility on RZX" N'H

3. Inherently non-smooth structure of RZ "

~> How to tackle the coupled and non-smooth constraints?



Bounded-rank optimization: optimality analysis

Variational geometry of RZ "
e Mordukhovich normal cone [Luke3)
e Bouligand tangent cone and Fréchet normal cone [schneider-Uschmajew1s]
e Clarke tangent cone and the corresponding normal cone [Hosseini et al9; Li et
al/19]



Bounded-rank optimization: optimality analysis

Variational geometry of RZ "
e Mordukhovich normal cone [Luke3)
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e Clarke tangent cone and the corresponding normal cone [Hosseini et al9; Li et
al/19]

Variational geometry of RZX" N C

Mordukhovich normal cone: C = Sym(n) [fam17]
Fréchet normal cone: C = Sym(n) N B; [Lietal20]

By ={X: | X|lp <1}, Bo={X: —tl, < X < tI,}, B3 = {X : X = 0, Tr(X) = 1}

e Cis aspectral set [[Lewis9s; Pan17: Li-Luo'23]

m # n breaks the symmetry!

Bouligand tangent cone: C={X € R™X": || X|| = 1} [cason etal'13]
Fréchet normal cone: € = {X € R™*" : A(X) = b} [Li-luo23]
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Variational geometry of RZ "
e Mordukhovich normal cone [Luke3)
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e Clarke tangent cone and the corresponding normal cone [Hosseini et al9; Li et
al/19]

Variational geometry of RZX" N C

Mordukhovich normal cone: C = Sym(n) [fam17]
Fréchet normal cone: C = Sym(n) N B; [Lietal20]

By ={X: | X|lp <1}, Bo={X: —tl, < X < tI,}, B3 = {X : X = 0, Tr(X) = 1}

e Cis aspectral set [[Lewis9s; Pan17: Li-Luo'23]

m # n breaks the symmetry!

Bouligand tangent cone: C={X € R™X": || X|| = 1} [cason etal'13]
Fréchet normal cone: € = {X € R™*" : A(X) = b} [Li-luo23]

~» Not available in RZ " N #!



Bounded-rank optimization: algorithms

e Projected gradient descent framework ain et al'14; Schneider-Uschmajew'1s; Olikier et
al!22; 2024]

e Retraction-free methods [schneider-Uschmajew'1s; Olikier et al/23; 2024]
line-search along restricted tangent cones

e Optimizing over a smooth parameterization

ming(Y) s.t. YeM

- LR factorization [mishra et al. 2012; Levin et al. 2022]
M =R™" x R"™" (L, R) = LR"
- SVD-type Lift (mishra et al14; Levin et al'23]
M = St(m, r) x Sym(r) x St(n,r), $(U,S, V)= USVT
- Desingularization [Khrulkov-Oseledets18; Rebjock-Boumal'24]
M={(X,G) eR™" x Gr(n,n—r): XG=0}, ¢(X,G) =X



Bounded-rank optimization: algorithms

e Projected gradient descent framework ain et al'14; Schneider-Uschmajew'1s; Olikier et
al!22; 2024]

e Retraction-free methods [schneider-Uschmajew'1s; Olikier et al/23; 2024]
line-search along restricted tangent cones

e Optimizing over a smooth parameterization

ming(Y) s.t. YeM

- LR factorization [mishra et al. 2012; Levin et al. 2022]
M =R™" x R"™" (L, R) = LR"
- SVD-type Lift (mishra et al14; Levin et al'23]
M = St(m, r) x Sym(r) x St(n,r), $(U,S, V)= USVT
- Desingularization [Khrulkov-Oseledets18; Rebjock-Boumal'24]
M={(X,G) eR™" x Gr(n,n—r): XG=0}, ¢(X,G) =X

~» Not applicable in coupled constraints RZ" N H! -
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A space-decoupling framework?

min F(X)
XeRmxn

s. t. XeR"NH

Space-decoupling for coupled constraints

=X
M, L} Rg;ﬁ” NH

1
'rank information?! 'A(X) = 07,
1 1



A space-decoupling framework?

min F(X)
XeRmxn

s. t. XeR"NH

Space-decoupling for coupled constraints
=X
My, L} Rg;ﬁ” NH

Goal:
e a smooth parametrization
e optimality analysis
e convergence analysis
e equivalence of two problems



Orthogonally invariant functions and
optimality




Orthogonally invariant “meets” low rank

Low rank decomposition
S=r

RZNH = R NH)

s=0
o H={XeR"": h(X) =0} with orthogonally invariant i
o X € R™ ™ N H extracts low-rank (H) and orthogonally invariant (1)

X =\ VT

20



Orthogonally invariant “meets” low rank

Low rank decomposition
S=r

RZNH = R NH)

s=0
o H={XeR"": h(X) =0} with orthogonally invariant i
o X € R™ ™ N H extracts low-rank (H) and orthogonally invariant (1)

X =\ VT

Submanifold inherites orthogonal invariance
X=HV', Vv=I
e Natural embeddings: i*(-) : R™** —s R™ " H s [H 0™*("~9)

e h°:= hoi’isorthogonally invariant
o H:={HeR™ " : h*(H) =0} isan embedded submanifold of R™**
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Orthogonally invariant “meets” low rank

Low rank decomposition
S=r

RZNH = R NH)

s=0
o H={XeR"": h(X) =0} with orthogonally invariant i
o X € R™ ™ N H extracts low-rank (H) and orthogonally invariant (1)

X =\ VT

Submanifold inherites orthogonal invariance
X=HV', Vv=I

e Natural embeddings: i*(-) : R™** — R™ ", H s [H 0™*("=9)]
e h°:= hoi’isorthogonally invariant
o H:={HeR™ " : h*(H) =0} isan embedded submanifold of R™**

~ XeH<— HecH

20



Space decoupling - level 1: tangent space

H={XeR™™: l(X)=0} and h(XQ)=h(X)for Q€ O(n)

Definition
e Bouligand tangent cone:

TxX = {77: lim M

X e Xt > 0forall &, lim tk:O}.
k— o0 tr k— 00

e fréchet normal cone: Nx X := (TxX)°

Tangent space decoupling at x = v’ ¢
TxH = {KVT +BV] : KeTyH’ Be RW<"—3)}

—(TaH) V' (RW("‘S)) v

21



Space decoupling - level 1: tangent space

H={XeR™™: l(X)=0} and h(XQ)=h(X)for Q€ O(n)

Definition
e Bouligand tangent cone:

TxX = {77: lim M

X e Xt > 0forall &, lim tk:O}.
k— o0 tr k— 00

e fréchet normal cone: Nx X := (TxX)°

Tangent space decoupling at x = v’ ¢
TxH = {KVT +BV] : KeTyH’ Be RW<"—3)}

_ (TH,Hs) VTEB (Rmx(n—s)) VJT
Ty (RENH)?

21



Space decoupling - level 2: tangent cone

Smooth layers
RZ"NH = U(RTX" NH): X=HV' =UsV'
s=0

e R™*™ N7 is a smooth manifold with
Tx R OH) ={KVT + 0V]: KeTut’, J e R0}
== TXRZLX” M TXH

22



Space decoupling - level 2: tangent cone

Smooth layers
REAH = JR"AH): X=HV' =USV'
s=0

e R™*™ N7 is a smooth manifold with
Tx R OH) ={KVT + 0V]: KeTut’, J e R0}
== TXRLTX'IL M TXH

Closed-form expression

KV' 4+ UJV + ULRV] : K €T’
mxmn _ 4 L
Tx (RST N H) - { Je ]Rsx(n—s)7 Re R(m—s)x(n—s)’ rank(R) <r—s

22



Space decoupling - level 2: tangent cone

Smooth layers
REAH = JR"AH): X=HV' =USV'
s=0

e R™*™ N7 is a smooth manifold with
Tx R OH) ={KVT + 0V]: KeTut’, J e R0}
== TXRLTX'IL M TXH

Closed-form expression

T T T . s
Ty (R 1) = { KVT + UJV] + ULRV] : K € TyH }

Je R R e RM=9X(=9) rank(R) < r — s

Intersection rules for tangent and normal cones
Tx( 2:"07—[) =Tx ;nfnﬂTx’H
Nx (RZ " NH) = NxRZ" & NxH
e Recover the tangent cone in [cason-Absil-Dooren'13, Theorem 611 When

H={XeR™" | X]lp =1} ;
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Space decoupling - level 3: a smooth parametrization

=X
My HEE gy

N
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Space decoupling - level 3: a smooth parametrization

=X
My HEE gy

1 1 1
'rank information?! 'A(X) = 0%,
1

A space-decoupling parameterization M,

e Borrow ideas from desingularization [khrulkov-Oseledetss; Rebjock-Boumal'24]

e Parameterize the coupled and non-smooth RZX" N'H
My ={(X,G) e R™" x Gr(n,n—r) : XG =0, h(X) =0}

where Gr(n,n —r) = {P € Sym(n) : P = P, rank(P) = n — '}

23



Space decoupling - level 3: a smooth parametrization

(X, Q) :=X
My CHEDEE RZ"NH

ottt Tttt [ )
1 GeGr(n,n—1)) | (X) =07,
1

L 1 (EeEeRemetenes

A space-decoupling parameterization M,

e Borrow ideas from desingularization [khrulkov-Oseledetss; Rebjock-Boumal'24]

e Parameterize the coupled and non-smooth RZX" N'H
My ={(X,G) e R™" x Gr(n,n—r): XG=0, W(X)=0}

where Gr(n,n —r) = {P € Sym(n) : P = P, rank(P) = n — '}

23



Space decoupling - level 3: a smooth parametrization

My T T, mrian

A space-decoupling parameterization M,

e Borrow ideas from desingularization [khrulkov-Oseledetss; Rebjock-Boumal'24]

e Parameterize the coupled and non-smooth RZX" N'H
My ={(X,G) e R™" x Gr(n,n—r): XG=0, h(X)=0}

where Gr(n,n —r) = {P € Sym(n) : P = P, rank(P) = n — '}

23



Space decoupling - level 3: a smooth parametrization

Mh C = R1n>‘<nmr}_[

1
G eGr(n,n—r1) ! :h(X)ZO:
1

1
L 1 (EeEeRemetenes

A space-decoupling parameterization M,

e Borrow ideas from desingularization [khrulkov-Oseledetss; Rebjock-Boumal'24]

e Parameterize the coupled and non-smooth RZX" N'H
My ={(X,G) e R™" x Gr(n,n—r): XG=0, h(X)=0}

where Gr(n,n —r) = {P € Sym(n) : P = P, rank(P) = n — '}

~» My is a smooth manifold embedded in R™*" x Sym(n)!

23



Recast the original constraint-coupled problem

(X’Iél)léthf (X, Q) (M)
min  f(X) (0
XeR%"f"r‘lH

R AH —————> R

o ¢ My — RIS NH: (X, G)— Xisasurjection

e (M) is a smooth Riemannian optimization problem

- Riemannian derivatives
- retractions
- vector transports

24



Space decoupling - level 4: optimization

Riemannian gradient V o4, f(X, G)
K =Pr (VEX)V), V= GVFX)THM,
Riemannian Hessian V?Vlh}”(X, )[n,¢]
K =V2,f(X)mV+ (1 - HM,;}WHT) VF(X)Vy,
V,=G ((v? FCOMNTH + VX)) T (1 - HM;LHT)K) Myl

First-order retraction
Rix,c) (€)== (R (K)RF(Vp) T, I = RYF(VR)(RF(Vp)T)

Second-order retraction
Rx,c) (1,¢) i= ((Prr (X+m) W) WT, 1 - WWT)
_1 _
W=LL"L)"2, L=V+ V,(I- K" HM}",)

Vector transport

K=THK) and V, =(I— V\“/T)T:VS:(VP)

25



Space decoupling - level 4: optimization

Riemannian gradient V o4, f(X, G)
K =Pr (VEX)V), V= GVFX)THM,
Riemannian Hessian V?Vlh}”(X, )[n,¢]
K =V2,f(X)mV+ (1 - HM,;}WHT) VF(X)Vy,
V,=G ((v? FCOMNTH + VX)) T (1 - HM;LHT)K) Myl

First-order retraction
Rix,c) (€)== (R (K)RF(Vp) T, I = RYF(VR)(RF(Vp)T)
Second-order retraction
Rx,c) (0,€) i= ([Prr (X +m W) W', 1 - WWT)
W=LLTL)"2, L=V+V,(I- K HM}")

Vector transport

K=THK) and V, =(I— V\“/T)T:VS:(VP)

Optimization on M, is painless if geometry of # is developed!

25



Equivalence of problems

i f M

B SO O

min f(X) (0)
XeRZ"NH

R AH —————> R
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Equivalence of problems

(X’Iél)léthf (X, Q) (M)
min  f(X) (0)
XeRZ"NH

R AH —————> R

~~» Parameterization may introduce spurious stationarity!
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Equivalence of problems

(X’Iél)léthf (X, Q) (M)
min  f(X) (0)
XeRZ"NH

R AH —————> R

~~» Parameterization may introduce spurious stationarity!

Equivalence
The space-decoupling parametrization My, of RZ*" NH satisfies

“1 = 1" holds at (X, G) if and only if rank (X) = r
“2 = 1" holds everywhere on M,

26



Convergence results

Important ingredients
e M, is a complete manifold

e Compact sublevel sets of f = compact sublevel sets of f

General convergence theorem

e The sequence {(Xx, Gi)} generated by monotone algorithms has at least
one accumulation point

e If the accumulation point (X*, G*) is second-order stationary for (M),
then X* is first-order stationary for (0)

Specific algorithms
e RGD accumulates to first-order critical points

e RTR accumulates to second-order critical points

27



Numerical experiments




1. Low-rank approximation of spherical data

Approximate A € H = Ob(m, n) with low-rank matrix [chu etal05]

. 1
min L |[Pa(x - A)|
XeR H=Ob(m,n) . - 1 Py

s.t.  rank(X) <r Jél}ﬁlh f(a) = 5 Pa(o(z) — Az

diag(XX")—1=0

Methods based on Manopt v8.0
e Riemannian gradient descent method (RGD)

e Riemannian trust region method (RTR)

Running platform
e CPU: two Intel(R) Xeon(R) Processors Gold 6330 @ 2.00GHzx28
e GPU: one NVIDIA A800 (80GB memory) GPU

28



1. Test on synthetic data

Test with the unbiased rank parameter r = r* =6

Mi-RGD (w=0.1)  seesssreens M)-RGD (@ =05) = = = M;-RGD (w=10)  =mmmm=— M;-RGD (w = 50)
M-RTR (w =0.1)  sevennnnens M;-RTR (w = 0.5) = = = Mj-RTR (@ =10) = M;-RTR (w = 50)
10° 100
b &
= 1077 “- S = 1077
57 S 5
= N - =
5} a SR [0}
3 I ] B
(o) b * (0]
(BT | = 10-10
o
i
10715 'l 10715
0 50 100 150 200 0 1 2 3 4
Iteration Time (s)
Test with over-estimated rank parameters
. r="7 r=3_8 r=9 r =10
Algorithm

Testerr. Time Testerr. Time Testerr. Time Testerr. Time

M} -RGD  4.88e—12 11.87 5.12e—13 6.55 1.1le—12 8.13 4.16e—12 16.98
Mp,-RTR  3.34e—15 14.93 5.27e—15 8.74 58le—15 7.19 2.14e—15 7.68
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2. Low-rank approximation of graph similarity matrices

Measuring problem [cason et al'13]
X € H = Sy(m, n) measures the node-to-node similarity between graphs

min  —tr(X Lo L£(X))

XeR’mXTL
s.t.  rank(X) <r

[X[F—-1=0

Mot | i —tr (9(a) L0 £0()))

zeEM]),
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2. Test on low-rank solution

Problem setting
e (G4 of m = 2000 vertices: a single cycle
e G of n = 3000 vertices: binomial random graph

e Solution of low rank: r* = rank(X™) =

unbiased rank parameter over-estimated rank parameters
Tterative (r=1) s [terative  (r = 50)
107! M,-RGD (r = 1) 1071} vassrss My-RGD (r = 10)
= = M,;-RGD (r = 50 )
] o = M-RGD (1 = 100
S 10 103 |
[0 [0
= >
T T
€ 10- € 10
1077 1077
0 50 100 0 50 100

Iteration Iteration
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3. Low-rank semidefinite programming

Synchronization problem
e n cameras with a set of relative rotations {R;; : (i,j) € E}
e reconstruct the absolute rotations { R;}?_; such that R; ~ R;R;
e Cis the measurement matrix defined by Ry

min  (C, XX ' —St(3n,3)"
o ) AR | nin f(z) = (C, $(z)d(x) )
s.t.  rank(X) <r, X € St(3n,3)" e

Reconstructed errors evaluated by ||R;R] — Ry||r

Errors on Standford bunny Errors on Sponed cow
2T S A
.g‘:‘i’ o s,.%" “

0.3

0.25

0.2

0.15

o
=)

0.1

o
S

0.05

g . % ots’
0'.’"~.'u‘&'pl-' B "ll“' ‘f" .3;.’.?
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0
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4. Model reduction of Markov processes

Problem formulation
e State space S = {s1, 52, ..., s,} and Markov model P € RIS/*I]
e Hadamard parameterization: P = X ® X, X € Ob(|S],|S])
e Proposed model

1 N
min | X® X - P|}
XerISIxIs| 2
s.t.  rank(X) <r
diag(XX ") —1=0

H=0b(|S|,|S . 1 A
HEOMELED, | min Zfl6(a) © é(x) — PR

zeMp,
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4, Test on the Manhattan transportation network

Problem setting
e Dataset of 1.1 x 107 NYC Yellow cab trips
e Model the transportation dynamics as a Markov proces

EzT ) I ( pickup __ =i ?ropoﬁ‘ _ ])
ZtTH (s?mkup _ l)

, for i,j€8

P(i,j) =

State compression
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5. Low-rank reinforcement learning

state
St
reward R

next state

action
ar ~ 7 (+|st)

Environment |~

ser1 ~ P (|st, at)

Low-rank strategy

e Hadamard parameterization for policy: 7(X) := X ® X, X € Ob(|S], |A])

e Impose low rank constrain

trank(X) <r

mi

— J(m(X
coimin (X))
s.t.  rank(X) <,

diag(XX")—1=0

FEEE, [ min —I(n(6(2)

TEM),
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5. Test in two environments

Pendulum Mountain car

Parameter efficiency

Algorithm Pendulum Mountain car
Parameters pstorage Reward Parameters pstorage Reward
REINFORCE 86,961 1.00 —0.94 582,096 1.00 96.99
Q-learning 86,961 1.00 —0.75 582,096 1.00 83.95
LRRPG (r = 5) 10,810 0.12 —0.73 15,485 0.03 88.31
LRRPG (r =10) 21,620 0.25 —0.58 30,970 0.05 86.44

LRRPG (r = 15) 32,430 0.37 —0.83 46,455 0.08 78.23
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6. Low-rank neural network with weight normalization

Motivation

e Weight normalization (salimans-kingma'16]

WeR™ "« W =_(g1") ® X with g e R™, X € Ob(m, n)
o Low-rank structure [idelbayev-Perpinan'22; Qu et al'24]

Proposed model

min  f({Xi, g:}oy)

{Xi9i}

H=0b(m,n)’ . 1
) ) —_— i)y Gi bie
s. t. rank(X;) < r; zieljwllg’gi FH{d(z), gitiz)
diag(X:X; ) —1=0
Compared models

Model Weight norm. Low rank Net. param. Search space Remark
Vanilla - - {wW;} R™i X"
WN v - {Xi, gi} Ob(mz, ’(Lz) x R™i -
LR - v {.’Ez‘, gz‘} Mhi x R™i hl() =0
WN+LR v v {zi, g:} My, x R™ hi(X;) = XiX, —1
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6. Test on deep learning tasks

Test on MNIST dataset

= MLP (vanilla) = MLP (WN) = MLP (LR) = MLP (WN+LR)
0.5 0.98
0.4
5 09
203 g
2 S 0.0
w ©
0.2 =
Q
F .92
0.1
00 10 20 30 40 090 10 20 30 40
Flops x107 Flops x107
Test on CIFAR-10 dataset
Algorithm Parameters  psiorage  Infer. flops  pinger Train. acc. (%) Testacc. (%)
CNN (vanilla) 2.62M 1.00 565.50M 1.00 96.67 87.80
CNN (WN) 2.62M 1.00 565.50M 1.00 100.00 90.31
CNN (LR) 0.38M 0.14 179.02M 0.32 90.01 83.07

CNN (WN+LR) 0.38M 0.14 179.02M  0.32 95.39 87.30
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Take-home notes

A space-decoupling framework

Level 1: Tangent space
bridge the rank information and orthogonal invariance

Level 2: Tangent cone
identify tangent and normal cones to R’Z’ff” NH
Level 3: Parametrization
a space-decoupling parametrization My, and its geometry

Level 4: Optimization
Riemannian optimization on M,
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Thanks for your attention!

Email: gaobin@lsec.cc.ac.cn
Homepage: https://www.gaobin.cc

homepage group blog
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